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Abstract. We present detailed description of a computer method for the calculation of the conductivity
of inhomogeneous systems based on an exact renormalization group transformation. We study by this
method the effective conductivity of the three-dimensional resistor network at the percolation threshold.
For lattices ranging in size from 43 to 1403 we measure the dissipation, finding t/νp = 2.305(15), where t
is the conductivity exponent and νp is the correlation length exponent.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.70.-a Thermodynamics

1 Introduction

Effective conductivity of an inhomogeneous media is one
of the central problems of the modern theory of trans-
port phenomena. In the present paper we are interested
in the transport properties of the composites or granu-
lar or porous materials with a macroscopic scale of inho-
mogeneity [1–3]. In such a material, there are small, yet
much larger than atomic regions where macroscopic ho-
mogeneity prevails and where the foregoing macroscopic
parameters suffice to characterize the physics. However,
different regions may have quite different values for those
parameters. If we are interested in physical properties at
a scale much larger than those regions and at which the
material appears to be homogeneous, then the macro-
scopic behaviour can again be characterised by bulk ef-
fective values, for example, an effective conductivity σe.
Because both the small scale behaviour (inside the dif-
ferent homogeneous regions) and the overall large-scale
behavior are now governed by the same laws of classi-
cal physics, the connection between the properties on the
two scales is rather strong. Suppose that a material can
be characterized by the local electric conductivity σ(r) so
that the local current density j(r) and local electric field
E (r) = −∇φ (r) + E0 are connected via usual Ohm’s law
j(r) = σ(r) (−∇φ+ E0), where E0 is an external electric
field and φ is a local potential that fluctuates due to in-
homogeneity of the systems. The charge conservation law
div j(r) = 0 can be written in the following form

∇ [σ(r) (−∇φ (r) + E0)] = 0. (1)
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Solution of equation (1) gives the field and current dis-
tribution in the system. Then the effective conductivity
σe that characterizes the bulk properties of an inhomoge-
neous system is defined as

〈j(r)〉 = σeE0, (2)

where 〈. . . 〉 stands for the volume average. When the com-
posite medium is macroscopically uniform, then the bulk
effective conductivity σe is an intensive material param-
eter – its value is independent of the volume and of the
precise nature of the macroscopic boundary conditions,
provided those too are macroscopically uniform. Conse-
quently, the particular choice of boundary conditions used
to find the fluctuating potential φ does not affect the
value σe obtained from equations (1, 2). We will use the
“natural” boundary condition φ (r) = 0 at the bound-
ary of the system, from which it follows that the aver-
aged electric field 〈E (r)〉 coincides with the external field
〈E (r)〉 = (1/V )

∫
(−∇φ (r) + E0) dV = E0, where V is

the volume of the system.
When some of the components are anisotropic, the def-

initions must be modified appropriately. For other physical
properties, such as mass and heat transport, thermoelec-
tric power, magnetotransport and elastic stiffness, a sim-
ilar discussion can be developed that results in equations
analogous to equations (1, 2) to determine the correspond-
ing effective parameters [2].

To use a computer method for solution the partial dif-
ferential equation (1) it is presented as a set of linear al-
gebraic equations that could be solved numerically. The
cubic lattice is usually used for this purpose, but more
sophisticated graphs that reflect internal geometry of the
system might be considered also (see e.g. [4]). In any case
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equation (1), being discretized, reduces to the set of Kirch-
hoff’s equations determined for each site “k” of the graph.∑

j

σkj (φj − φk +Ekj) = 0, (3)

where the summation is over the neighbours “j” of the
site “k”, the potentials φk and φj are electric potentials
of the site “k” and “j”, the conductivities σkj represent
the local conductivity σ(r) between site “k” and “j”. The
electromotive forces (EMF) Ekj in equation (3) stand for
the external electric field E0 applied to the system; Ekj =
−Ejk (see Appendix A).

We present here detailed description of a method for
solution of Kirchhoff’s equations (3), that we refer as exact
numerical renormalization (ENR). The ENR can be used
to calculate the potentials φk and currents

jkj = σkj (φj − φk +Ekj) (4)

flowing in a graph of any dimension, connectivity, etc.
The applied field can be homogeneous or inhomogeneous.
Moreover, the proper choice of EMF Ekj in equations (3)
allows us to simulate systems with intrinsic EMF where
electric current may flow even in the absence of the ex-
ternal field. Examples of such systems include compos-
ites containing metal grains and solid or liquid electrolytes
that form local galvanic elements. Since various problems
of transport theory reduce to the continuity equation (1)
that in turn is equivalent to Kirchhoff’s equations (3), the
effective method for the solution of equation (3) is impor-
tant for the actual calculation of various bulk effective pa-
rameters. Careful analysis of Kirchhoff’s equations (3) also
gives an insight into general features of transport phenom-
ena in composites. The proposed ENR method is most effi-
cient when the underlying graph, where Kirchhoff’s equa-
tions are determined, has hierarchical structure. It might
be, for example, fractal or another geometrical object with
low connectivity [1,5]. Note that the most interesting and
hard to understand transport phenomena do appear near
a critical point where the fluctuations of local parame-
ters have a structure that can be considered in rough
approximation as hierarchical (see, e.g., [6,7]). Then the
ENR method might be applied validly to find transport
coefficients.

In this paper we illustrate the advantages of the ENR
method by calculating the effective conductivity of a per-
colating system. A broad range of problems in the physics
of materials involve highly disordered media whose ef-
fective behaviour is dominated by the connectedness, or
percolation properties, of a particular component. Exam-
ples include porous media, doped semiconductors, smart
materials such as piezoresistors and thermistors, radar
absorbing composites, thin semicontinuous metal films,
sea ice, etc. (see [1–5,8–11] and references therein). In
modeling transport properties in such materials, a two-
component random media with component conductivities
σ and σ′ � σ is often considered. The volume fraction of
the components is p and 1−p correspondingly. When con-
ductivity σ′ of the “dielectric” component is equal to zero,

σ′ = 0, a classical metal-dielectric transition takes place in
a percolating system at the concentration p known as the
percolation threshold pc. The effective conductivity σe de-
creases with decreasing p and vanishes as σe ∼ (pc−p)t/νp

when the concentration of the conducting component p
approaches pc from above, where t is the conductivity
exponent and νp is the percolation correlation length
exponent.

The rest of the paper is organized as follows: In
Section 2 we describe our computer method, in Section 3
we consider how the method works for the simplest model-
the Sierpinskii Gasket, in Section 4 we calculate conduc-
tivity in 3d bond percolating problem and determine the
critical exponent t/νp, Section 5 is devoted to discussion
of the results.

2 Exact numerical renormalization (ENR)
of Kirchhoff’s equations

The problem of the bulk effective conductivity of an homo-
geneous medium can be approximated by a set of Kirch-
hoff’s equations (3), which are determined on an appropri-
ate chosen graph (see Appendix A). To solve Kirchhoff’s
equations we express the potential φk of the site “k” in
equation (3) in terms of the potentials φj of its neighbours.

φk =

∑
j σkj (φj −Ekj)∑

j σkj
, (5)

where the summation in equation (5) is over neighbours
of the site “k”. If this expression for the potential φk is
substituted in other of Kirchhoff’s equations the site k
is eliminated from the system. The potential φk appears
in Kirchhoff’s equations for the sites “j” that are neigh-
bouring the site “k”. For a particular site “i”, which is
connected to the site “k”, Kirchhoff’s equation (3) can be
written as

σik (φk − φi +Eik) +
∑
j

σij (φj − φi +Eij)

+
∑
m

σim (φm − φi +Eim) = 0, (6)

where the first term is due to the direct connection be-
tween sites “k”, and “i”; the sum in the second term
is over the sites “j” that are simultaneously connected
to the sites “k”, and “i”; the sum in the last term in
equation (6) is over all neighbours “m” of the site “i” that
are not connected to the eliminated site “k”. We substi-
tute in equation (6) the expression (5) for the potential
φk and obtain after simple algebraic transformations the
following equation∑

j

σ∗ij
(
φj − φi +E∗ij

)
+
∑
m

σim (φm − φi +Eim) = 0

(7)

where the first sum goes through the neighbours “j” of
the eliminated site “k” while the second sum is still over
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all neighbours “m” of the site “i” that are not connected
to the eliminated site “k”. The new conductivity σ∗ij is
given by

σ∗ij = σij + σ′ij , (8)

where the conductivity σ′ij is equal to

σ′ij =
σikσkj∑
n σkn

, (9)

where the sum in the denominator is over all neighbours of
the decimated site “k”. The new EMF E∗ij in equation (7)
is equal to

E∗ij =
σij
σ∗ij

Eij +
σ′ij
σ∗ij

E
′

ij , (10)

where

E
′

ij = Eik +Ekj . (11)

We can repeat the above procedure for all neighbours
“i” of the site “k”. That is we replace the potential φk
in Kirchhoff’s equations for the sites “i” by formula (5).
Then Kirchhoff’s equations for the sites “i” take form of
equation (7) that does not include the potential φk. Thus,
we eliminate potential φk from the whole set of Kirchhoff’s
equations. In other words, we decimate the site “k” from
the system.

The decimation of the site “k” results in the renormal-
ization of conductivities and EMFs of the neighbours of
the site “k”. Suppose that sites “i1” and “i2” are neigh-
bours of the site “k”. After decimation of the site “k” the
conductivity between sites “i1” and “i2” changes from ini-
tial value σi1i2 to σ∗i1i2 given by equation (8) and the EMF
Ei1i2 changes to E∗i1i2 given by equation (10). If the neigh-
bours “i1” and “i2” of the site “k” have not been con-
nected at all, a new connection between them is estab-
lished. The new bond conductivity σ∗i1i2 = σ

′

i1i2 and EMF
E∗i1i2 = E

′

i1i2
are given by equations (9, 11) respectively.

Since the ENR transformation is exact it does not change
the solution of Kirchhoff’s equations. That is, all poten-
tials φi that are solution of the transformed system of
Kirchhoff’s equations are still a solution of the original
system.

Using ENR given by equations (8, 10), we can elimi-
nate sites one by one from the system reducing it to the
sites with potentials φb that are fixed by boundary condi-
tions. Thus in the Introduction we considered the bound-
ary conditions φb = 0 for all “boundary” sites “b” while
the external field is included in the internal EMFs. As
soon as we know the potentials in the reduced system we
can restore the initial system site by site. At each step of
inverse ENR procedure we have only one unknown vari-
able, namely, the potential of the site being restored. This
potential can be found easily since all conductivities and
EMFs are well defined for any step of the direct ENR and
the inverse ENR procedure as well. Thus we can find po-
tential and current distribution in the system. Then we

can calculate effective conductivity σe, local field statis-
tics, and all other transport properties of the system. The
transformation of the percolation systems similar to given
by equation (8) was considered first in references [13,14].

Consider how the local dissipation changes under the
ENR. In general the dissipation Q in the original and
renormalized graph might be different. For example, the
circular current that flows through the sites “k”, “i1”, and
“i2”, where the sites “i1” and “i2” are neighbours of the
decimated site “k”, does not remain the same in the renor-
malized system since the loop “k − i1 − i2” is decimated
from the system together with site “k”. In Appendix B we
calculate the difference in the dissipation in the original
and renormalized system. We obtain that the difference
∆Qk due to decimating the site “k” is nonzero in gen-
eral and it is determined by the local conductivities and
EMFs. It is important to note that the dissipation ∆Qk
is intrinsic quantity that does not depend on the local po-
tentials φi. Therefore, we can find the dissipation ∆Qk
even we don’t know a priori the potential distribution in
the system.

To find the total, bulk dissipation we remove one site
at a time from the system. At each step of the ENR proce-
dure the conductivities and EMFs change, but the differ-
ence in dissipation before and after removing a site “k” is
still given by equation (B.15). Certainly, in the calculating
the dissipation ∆Qk we should use the values of local con-
ductivities and EMFs, which system ascribes at previous
stage of ENR, that is those that appear after decimation
of k−1 sites from the system. After elimination of all sites
the dissipation Q in the system can be calculated as sum
of ∆Qk at each step of renormalization:

Q =
N∑
k=1

∆Qk (12)

where N is the total number of sites. Assuming that exter-
nal field E0 is uniform and there are not intrinsic EMFs in
the original system it is easy to show [2] that bulk dissipa-
tion Q is determined by effective conductivity σe, namely,

Q = σeE
2
0V, (13)

where V is the system volume. Therefore, the ENR
method allows us to calculate the dissipation Q, and,
therefore the effective conductivity σe without actual cal-
culation of the potential and current distribution, just by
decimation sites one by one from the system.

3 Energy dissipation in a Sierpinskii Gasket

To illustrate the ENR method we consider a renormal-
ization of the simple self–similar fractal known as a Sier-
pinskii Gasket [3,15]. The construction of a 2d Gasket is
shown in Figure 1, its fractal dimension df = ln 3/ ln 2.
We set the length of the bond in the elementary trian-
gle is equals to a0. All bonds in the fractal are assume
to have the same conductivity σ0. We wish to determine
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Fig. 1. (a) Sierpinskii gasket of the size 4a0, (b) electromo-
tive forces (EMFs) E = {E1, E2, E3}, in a single cell of the
Sierpinskii gasket.

the energy dissipation Q in the Sierpinskii Gasket as a
function of its size L. An uniform fractal is considered
where EMFs are the same for each elementary triangle
and are described by the vector E0 = {E01, E02, E03}.
The positions and directions of EMF E01, E02, and E03

are shown in Figure 1b. To calculate the energy dissipation
in the Sierpinskii Gasket of size L = a02n we will consider
this fractal as an ensemble of fractals of size 2a0. We use
the ENR method, namely equations (8, 10), to decimate
the “internal” sites in each 2a0 fractal as it is shown in
Figure 2. After removal of all internal sites, 2a0 fractal con-
verts to simple triangle with bond conductivities σ1 = 3/5
σ0 and new EMFs given by vector E1 = {E11, E12, E13}.
It follows from equation (10), which is used at each step of
the decimation, that vectors E1 and E0 are connected as

E1 = M̂E0, (14)

where the matrix M̂ has eigenvalues λ1 = 2, λ2 = 2, and
λ3 = 3/5. The eigenvectors for eigenvalues λ1 and λ2 can
be chosen as e1 = {1, 0,−1}/

√
2 and e2 = {1,−2, 1}/2

while the eigenvector e3 = {1, 1, 1}/
√

3 corresponds to
the eigenvalue λ3. Note that the eigenvector e3 represents
the circular electric field in the Sierpinskii gasket. The dif-
ference in dissipation ∆Q̃1 between the fractal of size 2a0

and the triangle, which results from its renormalization,
can be calculated from equation (B.15), namely,

∆Q̃1 =
116
125

(E01 +E02 + E03)2
σ0 = 3

116
125

(e3 ·E0)2
σ0.

(15)

The difference in the dissipation∆Q1 between the original
fractal and the one where the all internal sites in 2a0 frac-
tals are removed is equal to∆Q1 = ∆Q̃1(L/2a0)df . As the
next step of transformation we remove the internal sites
in 4a0 fractals converting them again to a simple triangle.
We repeat the above outlined ENR procedure until the
size L = a02n of the fractal is achieved and therefore,
the fractal is reduced to the single triangle with bond
conductivity σn = (3/5)n σ0 and EMFs equal to En =
MnE0. The energy dissipation Q has two constituents:
A) Dissipation in the final triangle Q′ = σn (En ·En) =
σn

(
λn1 (e1 ·E0)2 + λn2 (e2 ·E0)2 + λn3 (e3 ·E0)2

)
, where

λ1 = λ2 = 2 and λ3 = 3/5 are eigenvalues of the ma-
trix M ; in the limit n → ∞ the dissipation Q′ takes

Fig. 2. Three successive steps of decimation the internal sites
in 2a0 triangle of the Sierpinskii gasket are shown. Current
values of the bond conductivities are denoted for each step of
exact numerical renormalization (ENR) transformation.

the form Q′ = σ0 (12/5)n
(

(e1 ·E0)2 + (e2 ·E0)2
)

since
λ3 < 1. B) A sum of all “internal” dissipations ∆Q =
∆Q1 +∆Q2 + · · ·+∆Qn, where

∆Qk =
116
125

(
9

125

)k−1

(e3 ·E0)2
σ0

(
L

a0

)df

. (16)

The sum of the internal dissipations ∆Q takes the form
∆Q =

∑n
k=1∆Qk = σ0 (e3 ·E0)2

Ldf in the limit n→∞.
The total dissipation Q (L) in the fractal of the size L
equals to

Q (L) = Q′ (L) +∆Q

= σ0

((e1 ·E0)2 + (e2 ·E0)2
)( L

a0

) ln(12/5)
ln 2

+ (e3 ·E0)2

(
L

a0

) ln 3
ln 2
]
. (17)

The second term in equation (17) increases with L faster
than first one. Therefore, the dissipation in the Sierpinskii
Gasket is determined mostly by the circular-mesh currents
in the fractal. The dissipation of the mesh currents is de-
termined in turn by the smallest loops.

Consider now the Sierpinskii Gasket where the applied
field E0 is such that (e3 ·E0) ∝ E01 + E02 + E03 = 0,
i.e. the sum of the EMFs is equal to zero for all possi-
ble contours in the original fractal. There are no mesh
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current in a such fractal and the dissipation Q (L) =
σ0E

2
0 (L/a0)−t̃ (L/a0)2, where the critical exponent t̃ =

ln (5/3) / ln 2, that is, we regain the known result for the
effective conductivity [3]. Thus we obtain an important
result that the dissipation in the Sierpinskii Gasket essen-
tially depends on the distribution of the local EMF. We
speculate that this result holds for any inhomogeneous
system though the connection between local field distri-
bution and energy dissipation might be different from the
simple equation (17). The energy dissipation is determined
by the effective conductivity for the very special case of
the EMF distribution only.

4 Bond percolating system near
the percolation threshold

We use the above developed ENR method to calculate the
effective conductivity of a percolating composite near the
percolation threshold. We consider the bond percolation
problem determined on a cubic lattice. Each bond of the
cubic lattice can be either conducting with the probabil-
ity p or broken with probability 1 − p. The conducting
bonds have the same conductivity σ, conductivity of the
broken bonds is equal to zero. We are interested in the
bulk effective conductivity σe as a function of the metal
concentration p. For the concentration p = 1 the effective
conductivity σe coincides with σ. With decreasing p the
effective conductivity σe decreases and it vanishes at the
concentration p = pc known as the percolation threshold.
For concentration p smaller than the percolation thresh-
old pc the effective conductivity σe = 0, and the system
is dielectric. Therefore, a metal-dielectric transition takes
place at p = pc [1–3]. The recent calculations [16] of the
percolation threshold give pc = 0.2488126± 0.000 000 5.

We consider in detail the effective conductivity σe for
the most interesting case when the concentration p of the
conducting component is close to the percolation thresh-
old pc. To find the local field and current distribution and,
therefore, the effective conductivity σe we solve Kirch-
hoff’s equations (3) where φk are potentials of the sites
of the cubic lattice. We choose the external electric field
E0 in the form E0 = {E0, E0, E0}, so the electromotive
forces Ekj in equation (3) are equal to Ekj = E0 for
the bonds coming from a site in +x, +y, and +z direc-
tions, while Ekj = −E0 for the bonds exiting the site k
in −x, −y, and −z directions (see Appendix A). Intro-
duction of the external electric field by EMFs included
in all conducting bonds allows us to set cycle bound-
ary conditions in all directions reducing the finite size ef-
fects. We are interested in the effective conductivity σe

defined as a ratio between applied field and averaged cur-
rent (〈jx〉+ 〈jy〉+ 〈jz〉) /3 = σeE0. For the bond perco-
lating problem determined on N×N×N cubic lattice the
current averaging takes the following form

1
3N3

∑
〈i,j〉

jij = σeE0, (18)

where jij given by equation (4) is the current flowing
in-between the sites i and j, while the summation in
equation (18) is going over all 3N3 bonds 〈i, j〉 in the
cubic lattice. Note that currents jij are equal to zero in
the broken bonds. Alternatively the effective conductivity
can be determined via the dissipation Q (see, e.g., [2]),
namely,

Q

3N
=

1
3N3σ

∑
〈i,j〉

j2
ij = σeE

2
0 . (19)

In both cases we are interested in the statistical limit
N →∞.

To find the effective conductivity σe we renormalized
the percolating system using the ENR method described
in the previous section, that is we remove sites one by
one, from the system and calculate the dissipation ∆Qk
connected to the currents flowing through the decimated
site by means of equation (B.15). Since we use full cyclic
boundary conditions we just remove all the sites from the
system. When all the sites are eliminated by means of the
ENR procedure, we obtain the full dissipation and the ef-
fective conductivity σe by equations (12, 19) correspond-
ingly.

For evaluation of the critical exponent t we use the
finite-size technique [3,17–19]. Let us consider the critical
region of the concentrations p in a vicinity of the percola-
tion threshold pc, where the percolation correlation length
ξp ∼ |p− pc|−νp much larger than unity, here νp ' 0.88 is
the critical exponent [3]. For the system size L � ξp the
effective conductivity depends only on L, and therefore
must be a power of L,

σe (L) = AL−t/νp . (20)

For L of order of ξp or larger, additional dependence on L
must appear only through the scaling ratio L/ξp (i.e., ξp
is our only “measuring stick”). Thus the following scaling
form is written

σe = L−t/νpf1(L/ξp) = L−t/νpf(L1/νp(p− pc)). (21)

In our simulations we take the concentration p = pc and
calculate σe (L) as a function of the size L. The critical
exponent t/νp is obtained when equation (20) fitted to
numerical data.

The value of the percolation threshold pc is known,
certainly, within some limits of error ∆pc. Therefore, the
argument x = L1/νp∆pc of the scaling function f in
equation (21) will more and more deviate from zero with
increasing L for the chosen numerical value of pc. As a
result equation (20) may not holds in the limit of large L.
To check such a potentiality we find the scaling function
f(x) in equation (21) by calculating the effective conduc-
tivity σe for different sizes L and concentration p in the
vicinity of the percolation threshold. Thus obtained scal-
ing function f(x) is shown in Figure 3. The data for dif-
ferent sizes L = 4, 8, 16, 32, 64, 128 collapse on the single
curve in agreement with finite size scaling. The function
can be approximate as f(x) ≈ A+Bx+Cx2 +Dx3, where
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Fig. 3. Scaling function f(x) for the effective conductivity
defined by equation (20), x = Lνp(p−pc). Points are numerical
results for different sizes L: (4) L = 128, (]) L = 64, (+)
L = 32, (◦) L = 16, (×) L = 8, (∗) L = 4; continuous line is
analytical approximation.

Fig. 4. Effective conductivity σ of 3d bond percolating sys-
tem as a function on the size L. Concentration of the conduct-
ing bonds corresponds to the percolation threshold p = pc =
0.2488126.

A = 0.56, B = 0.98, C = 3.1, D = 5.65 as it is shown in
Figure 3.

The percolation threshold is known now with good ac-
curacy, so error ∆pc does not exceed ∆pc ' 5× 10−7 [16].
Therefore, even for the largest size L = 140 used in the cal-
culation the critical exponent t the deviation x from zero
∆x = L1/νp∆pc does not exceed 10−4 and deviation the
scaling function f(∆x) − f(0) is also about 10−4, which
is much less than the relative statistical error in calcu-
lated values of the effective conductivity σe (L). Therefore
we can use equation (20) to approximate the numerical
results.

The results for σe (L) at the percolation threshold are
shown in Figure 4. The number of trials for the size
L = 4, 6, 9, 13, 19, 28, 42, 64, 80, 90, 128, and 140
were 3500, 2333, 1555, 1076, 736, 500, 333, 218, 175,
155, 109, and 80 respectively. Fitting these results with
equation (20) we obtain t/νp = 2.305(15). Our value for
t/νp is in marginal agreement but somehow larger than
the values t/νp = 2.2(1) of Derrida, Stauffer, Herrmann
and Vannimenus [20], t/νp = 2.26(4) of Normand and
Herrmann [21], t/νp = 2.276(12) of Gingold and Lobb [22],
and t/νp = 2.282(5) by Batrouni, Hansen and Larson [23].
Note that our largest system size Lmax = 140 is almost

Fig. 5. Conductivity σ of 3d bond percolating system as a
function of proximity to percolation threshold (p− pc) /pc.

twice as large as that having Lmax = 80 in reference [23].
Our error estimates, like those of references [22,23], are
purely statistical. We did not do a finite-size scaling anal-
ysis because, for the large system sizes we used, finite-size
effects were so small we could not observe them over the
statistical noise in our data. With νp ' 0.88, we there-
fore, have that t ' 2.0. To verify this result we also have
calculated the effective conductivity σe (p) as a function
for the concentration p for the concentrations close to the
percolation threshold p & pc. The conductivity σe (p) for
the cubic lattice 80×80×80 shown in Figure 5 follows the
equation σe (p) = B (p− pc)t with rather good accuracy
when the critical exponent t is chosen to be t = 2.02(2)
and numerical factor B ' 0.4. The value t = 2.0 coin-
cide with upper boundaries for the percolating conductiv-
ity exponent t ≤ 2 suggested in reference [9]. It could be
speculated [24] that t = 2 is exact result for 3d percolating
composites.

5 Discussion and conclusions

Let us now consider qualitatively how the ENR procedure
works for a system at percolation threshold when the
infinite conducting cluster is much ramified and
has been approximated by self-similar blob-link
structure [14,15,28,29]. When we eliminate a site
from the system by ENR, the number of neighbours
for the other sites increases in general, since the sites
connected to the decimated site become hold to each
other in general. In a regular lattice the ENR procedure
will result in an exponential increase of the bonds per
site. Therefore, the number of operations (and computer
time) to decimate a site increases exponentially in the
process ENR. The situation might be different near the
percolation threshold due to the characteristic blob-link
structure of the infinite percolating cluster. Consider
a blob with size L consisting of multi-connected sites
and suppose that the blob is connected to the rest of the
percolating system by two bonds only. If we decimate all



J.P. Clerc et al.: Determination of 3D exponent conductivity in percolation 513

sites of the blob but one, this last site has two neigh-
bours. Note that this result of ENR does not depend on
the internal structure of the eliminated blob. We can
apply ENR to all blobs of size L, reducing each of them
to one site. If the backbone of the infinite cluster has
a self-similar structure the resulting structure repeats
the structure of the initial backbone, but the distance
between new sites increases from 1 to L. At the next
steps of ENR, we can eliminate blobs of size L2 and so
on, until the size L of the whole system is achieved.

If the number of bonds per site does not increase then
the ENR procedure requires Ld operations only to deci-
mate all the sites from a percolating system of size L and
dimensionality d, and, consequently, to calculate its effec-
tive conductivity. We can compare this estimate with the
number of operations in other exact methods: the trans-
fer matrix method [25] takes about L7 operations, Frank
Lobb algorithm [26] takesL4 operations but this algorithm
works for 2d systems only. For example, the ENR proce-
dure takes about five minute on a Pentium 400 computer
to calculate the effective conductivity of a percolating sys-
tem with size 140× 140× 140 and concentration p = pc.
Note that the ENR procedure has a disadvantage since it
works with above efficiency for the concentrations p close
to the percolation threshold. Still ENR may be very use-
ful for simplification of the percolating system even far
away from the percolation threshold since it eliminates
the isolated clusters and increases sharply the connect-
edness of the system. After these simplifications, rather
effective relaxation methods [27] can be used to calculate
conductivity as has been done in reference [12].

The question of whether there is a fixed point for
the ENR transformation at the percolation threshold now
arises. Suppose we divide the system in blocks of size L
and then use ENR to decimate all sites in each block but
one. Then we repeat the procedure: we divide the sys-
tem resulting from previous ENR on the blocks of size L2

and again decimating all sites but one in each block of
the size L2. We repeat this block ENR again and again.
There are in general two possible scenarios for the sys-
tem transformation under successful block ENR. In the
process of transformation the system may take the form
of some self-similar fractal like the Sierpinskii Gasket and
will not change further except all the distances will scale
like L = Lk, where k is the number of transformations.
But it is now clear that the infinite cluster and the back-
bone are not hierarchical. It follows from, e.g., the current
probability distribution, which is not log normal, as would
be in the case for a hierarchical lattice [30,31]. To see how
does the structure of the percolation system changes under
ENR transformation have computed the average distance
l between the sites in the process of the block reduction as

l (L) =
1

LkN (k)
b

∑
i>j

l
(k)
ij , (22)

where l(k)
ij is the length of the bond between sites “i” and

“j” that appears after the blocks of size L = Lk are
reduced to the single sites, N (k)

b is the total number of

Fig. 6. Average distance l between connected sites as a func-
tion of block size L. The distance is measured in terms of L.

conducting bonds after k ENR transformations. The
length l (L) can be thought as a radius of interaction
in the system (measure of nonlocality). The radius of in-
teraction l (L) would achieve a fixed value lc for L→∞ if
the ENR transformations have a fixed point. The result of
our calculations shown in Figure 6 does not confirm this
suggestion. The system does not remain the same in the
process of ENR. The radius of interaction l (L) increases
gradually as

l (L) ∝ Lα, (23)

where the exponent α might be estimated as α ' 0.9.
We do not see any saturation of l (L) with increasing the
size L. This result confirm that system is not self similar
at the percolation threshold so that its structure changes
gradually in the course of the ENR transformations.

In conclusion, we present detail description of a
numerical method for calculation of the transport
phenomena in macroscopically inhomogeneous media.
Our method of exact numerical renormalization (ENR)
can be applied to any macroscopically inhomogeneous
media, but it is most successful if the transport prob-
lem is defined on a self-similar or quasi-selfsimilar
structure. We show this by considering the internal
dissipation in the Sierpinskii Gasket and the effective
conductivity of 3d percolating system. In the last
case the ENR method allows us to calculate con-
ductivity at the percolation threshold using only a
Pentium PC for a system whose size previously
require a super computer [23]. Far away from
the percolation threshold the ENR method does
not allow us to obtain explicitly the effective
transport properties. Yet it can be used to suffi-
ciently simplify the system, namely to reduce its
criticality, so that other computer methods like relaxation
can be used successfully.

Work was supported by the grant RFFI (98-02-17628).
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Appendix A: Kirchhoff’s equations as a model
for a composite medium

In this Appendix we show how the charge conservation
law given by equation (1) can be reduced to the set of
Kirchhoff’s equations (3). That is we show the transport
properties of a composite medium can be modeled by
a discrete electric circuit. Let us assume that an imagi-
nary cubic lattice with period ∆ is immersed in the inho-
mogeneous medium which is characterized by local con-
ductivity σ(r). Then we can rewrite equation (1) in a
discrete form. The vertexes of the lattice are numbered
with three integer numbers, i.e., a vertex with coordinates
r = {l∆, m∆, n∆, } has the numbers {l, m, n}. Thus we
obtain instead of partially differential equation (1) the fol-
lowing set of the linear equation determined at each site
of the cubic lattice

− 1
∆

 σ (l + 1/2,m, n)
φ (l + 1,m, n)− φ (l,m, n)

∆

−σ (l − 1/2,m, n)
φ (l,m, n)− φ (l − 1,m, n)

∆


+
E0x

∆
[σ (l + 1/2,m, n)− σ (l − 1/2,m, n)]

− 1
∆

 σ (l,m+ 1/2, n)
φ (l,m+ 1, n)− φ (l,m, n)

∆

−σ (l,m− 1/2, n)
φ (l,m, n)− φ (l,m− 1, n)

∆


+
E0y

∆
[σ (l,m+ 1/2, n)− σ (l,m− 1/2, n)]

− 1
∆

 σ (l,m, n+ 1/2)
φ (l,m, n+ 1)− φ (l,m, n)

∆

−σ (l,m, n− 1/2)
φ (l,m, n)− φ (l,m, n− 1)

∆


+
E0z

∆
[σ (l,m, n+ 1/2)− σ (l,m, n− 1/2)] = 0, (A.1)

where φ (l,m, n) is the fluctuating potential at the lat-
tice site {l,m, n}, σ (l + 1/2,m, n) is the local con-
ductivity defined in-between the sites {l,m, n} and
{l + 1,m, n}, i.e. σ (l + 1/2,m, n) = σ (r), with r =
{(l + 1/2)∆, m∆, n∆}; conductivities σ (l − 1/2,m, n) ,
σ (l,m± 1/2, n) and σ (l,m, n± 1/2) are defined in a sim-
ilar way. We also suppose that the external electric field
E0 with components E0 = {E0x, E0y, E0z} is uniform
over the composite. We define now the multi-indexes k
as k = {l,m, n} and rearrange equation (A.1) as∑

j

σkj (φj − φk)−∆
∑
j>k

σkjEj +∆
∑
j<k

σkjEj = 0,

(A.2)

where j is another multi-index which denotes the near-
est neighbours of the site k; the first sum in equa-
tion (A.2) is over all nearest neighbours; the second
sum is over “j > k”, i.e., the multi-index j takes val-
ues j1 = {l + 1/2,m, n}, j2 = {l,m+ 1/2, n} or j3 =
{l,m, n+ 1/2}; the third sum is over “j < k”, i.e., the
multi-index j takes values j4 = {l − 1/2,m, n}, j5 =
{l,m− 1/2, n} or j6 = {l,m, n− 1/2}; the components

Ej of the external fields take values Ej1 = E0x, Ej2 =
E0y, Ej3 = E0z in the second sum and Ej takes values
Ej4 = −E0x, Ej5 = −E0y, Ej6 = −E0z in the third sum
in equation (A.2); the conductivities σkj are equal to the
local conductivity σ (r) in-between the sites k and j. If
we define the electromotive force Ekj as Ekj = −∆Ej for
k > j and as Ekj = ∆Ej for k < j then equation (A.2)
takes the form∑

j

σkj (φj − φk +Ekj) = 0, (A.3)

which coincides with Kirchhoff’s equations (3). The solu-
tion of equations (A.3) tends to the potential distribution
given by equation (1) in the limit ∆→ 0.

We use a cubic lattice to discrete the inhomogeneous
media and obtain equations (A.3). The above considera-
tion can be repeated for any spatial lattice. As a result
we will again get Kirchhoff’s equations determined on a
particular lattice, though the values of σkj and Ekj might
be different from obtained for the square lattice. More-
over, we do not need a regular lattice at all. When the
conducting phase has rather ramified spatial distribution,
as takes place in brine saturated rocks, very sophisticated
triangulations are used in order to discretize the system
and solve the conductivity or flow problem (see, e.g., [4]).

Note that most of the theoretical works on percolation
have actually dealt with random resistor networks, where
conductivities σkj are assumed to be statistically indepen-
dent, rather than with continuum composites. In the spirit
of the modern theory of critical phenomena it is assumed
that the important critical properties are universal, i.e.,
independent of the precise details of the model-like corre-
lation in values of σkj (see discussion in [2]).

Appendix B: Change in dissipation under ENR
transformation

In this Appendix we calculate the difference in the dissi-
pation in the original and renormalized system where the
site “k” is decimated. To simplify the straightforward but
somehow tedious calculations we introduce the following
variables

εij = Eij + φj − φi (B.1)

ε′ij = E
′

ij + φj − φi (B.2)

ε∗ij = E∗ij + φj − φi (B.3)

where “i” and “j” are sites, connected to the site “k” deci-
mated from the system, while EMFs E

′

ij and E∗ij are given
by equations (11, 10) respectively. The quantities εij , ε′ij ,
and ε∗ij are not independent. Substituting the expression
for E∗ given by equation (10) in equation (B.3) and using
equation (8) we obtain

ε∗ij =
1
σ∗ij

(
σijεij + σ′ijε

′
ij

)
(B.4)
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where conductivities σ∗ij and σ′ij are given by
equations (8, 9) respectively.

The total dissipation of the energy Q in the original
system is equal to

Q =
∑

m,n<m

σmnε
2
mn, (B.5)

where the summation is over all sites of the graph. Since
the ENR procedure changes the conductivities and EMFs
of the neighbours of the decimated site “k” only, the dif-
ference in the dissipation before and after the decimation
of the site “k” can be written in the following form

∆Qk =
∑
i

σkiε
2
ki +

∑
i,j<i

σijε
2
ij −

∑
i,j<i

σ∗ijε
∗2
ij (B.6)

where the summation goes over the sites “i” and “j” con-
nected to the decimated site “k”, and εij , ε∗ij , and σ∗ij are
given by equations (B.1, B.3, 8) respectively. Note, that
the last term in equation (B.6) is the sum of the dissi-
pations in the bonds between sites “i” and “j” that are
renormalized by the ENR procedure applied to the site
“k”. Substituting equation (B.6) in equation (B.4) for the
renormalized ε∗ij and using then equations (8, 9) we rewrite
equation (B.6) as

∆Qk =
∑
i

σkiε
2
ki−

∑
i,j(j<i)

[
1
σ∗ij

(
σijεij + σ′ijε

′
ij

)2 − σijε2
ij

]

=
∑
i

σkiε
2
ki −

∑
i,j (j<i)

1
σ∗ij

(
2σijσ′ijεijε

′
ij+σ′2ijε

′2
ij−σijσ′ijε2

ij

)
.

(B.7)

To simplify equation (B.7) we separate out the difference
ε′ij − εij in the parentheses, obtaining

∆Qk =
∑
i

σkiε
2
ki +

∑
i,j (j<i)

σ′ijσij

σ∗ij

(
ε′ij − εij

)2
−

∑
i,j (j<i)

σ′ijε
′2
ij .

(B.8)

Let’s demonstrate that the first and the last sums in
equation (B.8) cancel each other. Indeed, substituting
equation (11) in equation (B.2) and using equation (B.1)
we can see that ε′ij = εik + εkj . From this equation and
equation (9) it follows that the last sum in equation (B.8)
can be written as∑
i,j (j<i)

σ′ijε
′2ij =

1∑
n σkn

∑
i,j (j<i)

σikσkj (εik + εkj)
2
,

(B.9)

where the summation in the denominator goes over all
neighbours of the site “k”. We use the relations σik =
σki and εik = −εki, that follows from definition εik given
by equation (B.1) and the “vector” properties of EMF

Eik = −Eki (see Appendix A) to present equation (B.9)
in a “symmetric” form, namely,

∑
i,j (j<i)

σ′ijε
′2
ij =

1∑
n σkn

 ∑
i,j (j<i)

σikσkj
(
ε2
ik + ε2

kj

)

−2
∑

i,j (j<i)

σkiσkjεkiεkj

 .
(B.10)

Neither of the two terms in the square brackets changes
under the exchange indexes “i” and “j”. This symmetry
allows us to extend the summation in equation (B.10) over
all values of the indexes “i”, “j”. Thus, we obtain

∑
i,j (j<i)

σ′ijε
′2
ij =

1∑
n σkn

1
2

2
∑
i.j

σikσkjε
2
ik

−2

(∑
i

σkiεki

)∑
j

σkjεkj


=
∑
i

σikε
2
ik−
(∑

i

σkiεki

)2
1∑
n σkn

, (B.11)

where all the summations are still over the sites that are
connected to the decimated site “k”.

Note, we assume there is no connection of a site with
itself, i.e., we assume that σii = 0 and Eii = 0 for all the
sites in the original system. It is easy to verify that
the “loop” connections will not appear in the course of
the ENR procedure and, therefore, σii, Eii, and εii remain
zero after an arbitrary number of decimations. We show
now that the last term in equation (B.11) is exactly equal
to zero. Substituting in the sum

∑
i σkiεki expression for

εik from equation (B.1) we obtain the equation∑
i

σkiεki =
∑
i

σki (φi − φk +Eki) , (B.12)

which coincides with Kirchhoff’s equation (3) for the site
“k”. Therefore, the sum

∑
i σkiεki is equal to zero. Sub-

stituting this result in equation (B.11) we obtain that∑
i,j (j<i)

σ′ijε
′2
ij =

∑
i

σikε
2
ik, (B.13)

which means that first and third terms in equation (B.8)
cancel each other. As a result we get from equation (B.8)
a simple equation for the dissipation ∆Qk:

∆Qk =
∑

i,j (j<i)

σ′ijσij

σ∗ij

(
ε′ij − εij

)2
, (B.14)

where the summation still goes over the sites “i” and “j”
connected to the decimated site “k”. Substituting here
the definitions of the conductivities σ∗ij , σ

′
ij and “electric

fields” εij , ε′ij given by equations (8, 9) and (B.1, B.2)
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respectively we obtain the final formula of the dissipation
∆Qk, namely,

∆Qk =
∑

i,j (j<i)

σikσkjσij
σikσkj + σij

∑
n σkn

(Ejk +Eki +Eij)
2

(B.15)

where we still use that Eik = −Eki and all sums are over
the neighbours of the decimated site “k”.
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